The City of Fort Wayne

bicycle/pedestrian connections

South Central Area & Downtown Connectivity Study
ACKNOWLEDGMENTS

The City Of Fort Wayne

Pam Holocher, Deputy Director for Planning and Policy
Sherise Fortriede, Planning Manager
Cristian White, Planner
Janel Cain, Housing Programs Administrator
Paul Thuringer, Project Manager
Kelly Lundberg, Grants and Planning Administrator
Tom Cain, Urban Design and Landscape Architect
Dawn Ritchie, Greenways Manager
Alec Johnson, Landscape Architect
Shan Gunawardena, Traffic Engineer

Northeastern Indiana Regional Coordinating Council

Dan Avery, Executive Director
Jeff Bradtmiller, Senior Transportation Planner
Matt Peters, Principal Transportation Planner
The City of Fort Wayne

bicycle/pedestrian connections

South Central Area & Downtown Connectivity Study

CONNECTIVITY STUDY
Prepared for:

The City of Fort Wayne
Community Development Division

February 18, 2009

Prepared by:
Storrow Kinsella Associates Inc
ABSTRACT

The City of Fort Wayne has an active daytime Downtown with a mix of retail, office, entertainment, and recreation. A strong core of central residential neighborhoods has the potential to help activate evening and weekend use in Downtown if more connectivity is provided. Downtown area residents of Fort Wayne have expressed increased interest in walking and bicycling within the central area of the City and the City has made progress on linking the Rivergreenway system to Downtown and the north central neighborhoods. The City is currently undertaking a planning effort to determine priority investment areas for additional bicycle infrastructure. The south central neighborhoods have been identified as lacking adequate bicycle and pedestrian connections to Downtown and the Rivergreenway system, in part due to the presence of a rail corridor that bisects the City, acting as a physical barrier to the Downtown. This lack of connectivity further challenges the renewal effort of south central areas like Renaissance Pointe and the south Calhoun commercial district. This study resolves this disparity and provides the basis for bicycle and pedestrian connectivity between the south central neighborhoods and Downtown Fort Wayne. The study examines existing land uses and the character of public right-of-ways, the trip generators of destination areas, and potential infrastructure changes to promote bicycle and pedestrian connectivity. The findings result in a recommendation for a network of south central bicycle and pedestrian facilities with the possibility of local and regional extensions. The centerpiece of the recommended system is a marquee urban greenway trail that will turn the railroad barrier into a downtown portal opportunity at three locations and extend through Downtown to the Rivergreenway. This study presents solutions that can move very quickly into the design-build phase of network implementation. Guidelines for the design of the network, its amenities, and facility typologies are provided to inform subsequent phases of facility development. The study culminates in detailed feasibility analysis for each of the recommended urban greenway corridor segments with proposed cross sections, budget projections, and phasing considerations.
TABLE OF CONTENTS

Abstract... x.i
Table of Contents.. x.iii
Table of Figures... x.iv

SECTION 1: PROJECT CONTEXT

Conceptual Overview... 1.1
Summary of the Plan Development... 1.1 - 1.6
Project Description... 1.7
Purpose, Goals, Evaluation... 1.8 - 1.11
Project Process... 1.12 - 1.15

SECTION 2: CONNECTIVITY SYSTEM

Urban Greenway Toolkit... 2.1 - 2.8
Supportive Bike Facility Toolkit... 2.9 - 2.10
Connectivity Recommendations... 2.11
System Connectivity.. 2.12 - 2.13
Urban Greenway Corridors.. 2.14 - 2.15
Supportive Bike Facility Corridors.. 2.16 - 2.17
Phasing Recommendations... 2.18 - 2.19

SECTION 3: URBAN GREENWAY FEASIBILITY

Section 3 Introduction.. 3.1 - 3.2
Creighton.. 3.3 - 3.6
Harrison.. 3.7 - 3.14
Calhoun... 3.15 - 3.22
Douglas... 3.23 - 3.26
Hanna... 3.27 - 3.38
Lewis Link.. 3.39 - 3.42
Barr Link.. 3.43 - 3.54

SECTION 4: URBAN GREENWAY PLAN DETAIL

Overview.. 4.1
Western Links... 4.2
Southern Link... 4.3
Eastern Link... 4.4
Northern Link... 4.5
Downtown Link.. 4.6
Example Intersection Details... 4.7 - 4.8

SECTION 5: APPENDICES

A: Corridor Evaluation Matrix
B: Public Workshop Summary
C: Current Condition Photos
D: Costs and Impacts
TABLE OF FIGURES

SECTION 1: PROJECT CONTEXT... PAGE
Figure 1.1 Linking Nodes and Places.. 1.2
Figure 1.2 Desire Lines and Walkable/Bikeable Scale............................. 1.2
Figure 1.3 Railroad Viaducts as Downtown Portals................................. 1.3
Figure 1.4 Adapting to the Grid: East-West.. 1.3
Figure 1.5 Adapting to the Grid: North-South.. 1.4
Figure 1.6 Adapting to the Grid: Downtown... 1.4
Figure 1.7 Scalability of the System: Extensions....................................... 1.5
Figure 1.8 Conceptual Basis 4... 1.5
Figure 1.9 Concept Diagram... 1.6
Figure 1.10 Project Study Area... 1.7
Figure 1.11 Urban Greenway Facility.. 1.7
Figure 1.12 Corridor Evaluation Map.. 1.8 - 1.9
Figure 1.13 Corridor Selection Map... 1.10 - 1.11
Figure 1.14 Early Concept Sketch... 1.12
Figure 1.15 Project Schedule... 1.13
Figure 1.16 Concept Sketch Development... 1.14
Figure 1.17 Public Open House... 1.15
Figure 1.18 Focus Group Photo... 1.15
Figure 1.19 Focus Group with Displays.. 1.15

SECTION 2: CONNECTIVITY STUDY.. PAGE
Figure 2.1 Residential Urban Greenway... 2.1
Figure 2.2 Commercial Urban Greenway... 2.1
Figure 2.3 Existing Design Model... 2.1
Figure 2.4 Component Zone Table... 2.2
Figure 2.5 Optimized Residential Design... 2.3
Figure 2.6 Optimized Commercial Design... 2.3
Figure 2.7 Existing Historic Structures.. 2.4
Figure 2.8 Planned Trail Projects and Design... 2.4
Figure 2.9 Active Path Planning.. 2.5
Figure 2.10 District Nodes.. 2.6
Figure 2.11 Creating Pedestrian Activity Areas....................................... 2.6
Figure 2.12 Existing Pedestrian Activity Area... 2.6
Figure 2.13 Exterior Furnishings.. 2.7
Figure 2.14 Trees and Plantings.. 2.7
Figure 2.15 Raingardens... 2.7
Figure 2.16 Signage/Wayfinding.. 2.7
Figure 2.17 Permeable Pavements.. 2.7
Figure 2.18 Public Art/Sculptures.. 2.7
Figure 2.19 Bike Lane Corridor Illustration.. 2.8
Figure 2.20 Bike Lane Design... 2.8
Figure 2.21 Sharrow Corridor Illustration.. 2.9
Figure 2.22 Sharrow Design... 2.9
Figure 2.23 Shared Lane Design... 2.9
Figure 2.24 Bicycle Boulevard Illustration... 2.10
TABLE OF FIGURES (CONTINUED)

SECTION 2: CONNECTIVITY STUDY (CONTINUED).......................... PAGE
Figure 2.25 Quiet Street Illustration.. 2.10
Figure 2.26 Urban Greenway Photo.. 2.11
Figure 2.27 Bike Lane Photo.. 2.11
Figure 2.28 Bicycle/Pedestrian Connectivity................................. 2.12 - 2.13
Figure 2.29 Urban Greenway Corridors... 2.14 - 2.15
Figure 2.30 Priority Bike Lane Corridors.. 2.16 - 2.17
Figure 2.31 Phasing Recommendationa... 2.17 - 2.19

SECTION 3: URBAN GREENWAY FEASIBILITY.......................... PAGE
Figure 3.1 Phasing Map... 3.1
Figure 3.2 Bike Rack Example.. 3.2
Figure 3.3 Pedestrian Activity Zone Example................................. 3.2
Figure 3.4 Example Intersection Treatment................................. 3.3
Figure 3.5 Historic Housing Rehab... 3.3
Figure 3.6 Creighton - Plan Detail... 3.4
Figure 3.7 Creighton - Photograph.. 3.4
Figure 3.8 Creighton - X Sections.. 3.5
Figure 3.9 Creighton - Feasibility.. 3.6
Figure 3.10 Harrison North of Railroad.. 3.7
Figure 3.11 Grand Promenade Opportunities............................... 3.7
Figure 3.12 Harrison Segment 1 - Plan Detail............................... 3.8
Figure 3.13 Harrison Segment1 - Photograph................................. 3.8
Figure 3.14 Harrison Segment 1 - X Sections.................................. 3.9
Figure 3.15 Harrison Segment 1 - Feasibility.................................. 3.10
Figure 3.16 Harrison Railroad Underpass..................................... 3.11
Figure 3.17 Harrison Segment 2 - Plan Detail............................... 3.12
Figure 3.18 Harrison Segment 2 - Photograph............................... 3.12
Figure 3.19 Harrison Segment 2 - X Sections............................... 3.13
Figure 3.20 Harrison Segment 2 - Feasibility.................................. 3.14
Figure 3.21 Walgreens at Calhoun & Creighton.......................... 3.15
Figure 3.22 Calhoun Segment 1 - Plan Detail............................... 3.16
Figure 3.23 Calhoun Segment 1 - Photograph............................... 3.16
Figure 3.24 Calhoun Segment 1 - X Sections............................... 3.17
Figure 3.25 Calhoun Segment 1 - Feasibility.................................. 3.18
Figure 3.26 Calhoun Iron Columns.. 3.19
Figure 3.27 Calhoun Segment 2 - Plan Detail............................... 3.20
Figure 3.28 Calhoun Segment 2 - Photograph............................... 3.20
Figure 3.29 Calhoun Segment 2 - X Sections............................... 3.21
Figure 3.30 Calhoun Segment 2 - Feasibility................................. 3.22
Figure 3.31 Botanical Conservatory Campus............................... 3.23
Figure 3.32 Douglas - Plan Detail... 3.24
Figure 3.33 Douglas - Photograph.. 3.24
Figure 3.34 Douglas - X Sections.. 3.25
Figure 3.35 Douglas - Feasibility.. 3.26
Figure 3.36 Hanna Commercial Opportunities............................ 3.27
FORWARD

TABLE OF FIGURES (CONT.)

SECTION 3: URBAN GREENWAY FEASIBILITY (CONTINUED)...

Figure 3.37 Hanna Segment 1 - Plan Detail	3.28
Figure 3.38 Hanna Segment 1 - Photograph	3.28
Figure 3.39 Hanna Segment 1 - X Sections	3.29
Figure 3.40 Hanna Segment 1 - Feasibility	3.30
Figure 3.41 Trail Design Flexibility	3.31
Figure 3.42 Hanna Residential Connection	3.31
Figure 3.43 Hanna Segment 2 - Plan Detail	3.32
Figure 3.44 Hanna Segment 2 - Photograph	3.32
Figure 3.45 Hanna Segment 2 - X Sections	3.33
Figure 3.46 Hanna Segment 2 - Feasibility	3.34
Figure 3.47 Hanna Underpass	3.35
Figure 3.48 Hanna Underpass Features	3.35
Figure 3.49 Hanna Segment 3 - Plan Detail	3.36
Figure 3.50 Hanna Segment 3 - Photograph	3.36
Figure 3.51 Hanna Segment 3 - X Sections	3.37
Figure 3.52 Hanna Segment 3 - Feasibility	3.38
Figure 3.53 Lewis Intersection Treatment	3.39
Figure 3.54 Lewis Commercial Nodes	3.39
Figure 3.55 Lewis - Plan Detail	3.40
Figure 3.56 Lewis - Photograph	3.40
Figure 3.57 Lewis - X Sections	3.41
Figure 3.58 Lewis - Feasibility	3.42
Figure 3.59 Parking Lot Frontage	3.43
Figure 3.60 Barr: Engaging St. Paul's Campus	3.43
Figure 3.61 Barr Segment 1 - Plan Detail	3.44
Figure 3.62 Barr Segment 1 - Photograph	3.44
Figure 3.63 Barr Segment 1 - X Sections	3.45
Figure 3.64 Barr Segment 1 - Feasibility	3.46
Figure 3.65 Barr Pedestrian Improvements	3.47
Figure 3.66 Barr: Engaging the Barr St. Market	3.47
Figure 3.67 Barr Segment 2 - Plan Detail	3.48
Figure 3.68 Barr Segment 2 - Photograph	3.48
Figure 3.69 Barr Segment 2 - X Sections	3.49
Figure 3.70 Barr Segment 2 - Feasibility	3.50
Figure 3.71 Barr Underpass	3.51
Figure 3.72 Barr Segment 3 - Plan Detail	3.52
Figure 3.73 Barr Segment 3 - Photograph	3.52
Figure 3.74 Barr Segment 3 - X Sections	3.53
Figure 3.75 Barr Segment 3 - Feasibility	3.54
TABLE OF FIGURES (CONTINUED)

SECTION 4: URBAN GREENWAY PLAN DETAIL

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Overview</td>
<td>4.1</td>
</tr>
<tr>
<td>4.2</td>
<td>Western Links</td>
<td>4.2</td>
</tr>
<tr>
<td>4.3</td>
<td>Southern Link</td>
<td>4.3</td>
</tr>
<tr>
<td>4.4</td>
<td>Eastern Link</td>
<td>4.4</td>
</tr>
<tr>
<td>4.5</td>
<td>Northern Link</td>
<td>4.5</td>
</tr>
<tr>
<td>4.6</td>
<td>Downtown Link</td>
<td>4.6</td>
</tr>
<tr>
<td>4.7</td>
<td>Example Intersection 1</td>
<td>4.7</td>
</tr>
<tr>
<td>4.8</td>
<td>Example Intersection 2</td>
<td>4.7</td>
</tr>
<tr>
<td>4.9</td>
<td>Existing Intersection</td>
<td>4.8</td>
</tr>
</tbody>
</table>
The City of Fort Wayne
bicycle/pedestrian connections
South Central Area & Downtown Connectivity Study

Section 1: Project Context

Conceptual Overview

Summary of the Plan Development

- linking nodes and Places
- desire lines and walkable/bikeable scale
- railroad viaducts as downtown portals
- adapting the grid: east-west
- adapting the grid: north-south
- adapting the grid: downtown
- scalability of the system: extensions
- emerging connectivity system

Project Description

- study area
- bicycle & pedestrian connectivity
 - creating a system

Purpose, Goals, Evaluation

- purpose
- goals
- evaluation

Project Process

- steering committee
- resident surveys
- resident survey results
- online bike surveys
- online bike survey results
- field checks and research
- workshop focus groups
- workshop open house
- workshop surveys
- workshop results
Study Area

Project Study Area
CONCEPTUAL OVERVIEW

This connectivity study for bicycle and pedestrian transportation for the south central area of near-downtown Fort Wayne has evolved in its purpose in the course of its development. The study was originally intended as a feasibility study to identify a preferred route for a bicycle and pedestrian connection between a new redevelopment district one mile southeast of downtown Fort Wayne, Renaissance Pointe, and the 20-mile long Rivergreenway Trail at Headwaters Park on the northern edge of downtown.

It became evident early in the study process that a higher probability of success for a bicycle/pedestrian connection would accrue if it not only connected Renaissance Pointe to downtown, but also connected to other neighborhoods of the south central area and to shared destinations such as commercial, educational, recreational and cultural resources. Thus a set of viable candidate corridors, from which a single preferred route was to have been selected, has emerged as a multi-neighborhood network that will serve a much larger population than just Renaissance Pointe. The south central area urban greenway, as proposed in this study, will not only connect this aggregate of neighborhoods to downtown Fort Wayne and its adjacent Rivergreenway system, but will also, by extension, add connections to the east and west. This will bring additional neighborhoods that are currently spatially isolated by thoroughfare patterns, land uses and apparent distance, into a broad alternative transportation connectivity web of interdependence and accessibility, a hallmark of a walkable, bicycle-friendly community. Likewise extension to the south will provide connectivity to historic Rudisill Boulevard and its east and west termini destinations of McMillen Park and Foster Park, respectively.

This broader vision ensures that a south central area urban greenway will be more than a single use (and possibly underused) facility but one that will, over time, become part of an interrelated system. Either of two sets of its proposed route segments can comprise the desired link between Renaissance Pointe and downtown as a prioritized first phase. Subsequent phases can be developed as funding opportunities allow, and will increase utilization and cross-district accessibility, based on a common set of design principles and standards for a readable and consistent district-wide system.

This dedicated urban greenway trail framework should also, over time, be supplemented by a pervasive network of bike lanes, bicycle boulevards, shared lanes (sharrows), and safe and attractive pedestrian facilities to achieve the ideal of broad accessibility between home and the many destinations available within an urban setting, for all ages and throughout the city.

The underlying premise regarding the proposed urban greenway is that the no single bicycle facility can fully serve all bicycle skill levels, which range from child, to basic, to advanced skills cyclists. System users can include families, tourists, and daily commuters, all having differing needs as well as differing comfort levels when interfacing with traffic. The system studied here proposes a dedicated bicycle/pedestrian system, entirely within public right-of-way but separated from vehicular traffic, to provide alternative transportation and recreation to the widest group of users.

Out of these considerations, the concept of a South Central Area and Downtown Connectivity Study has evolved, as discussed and illustrated within this report.

SUMMARY OF THE PLAN DEVELOPMENT

The concept diagrams and narrative on the following pages summarize the logic and development of an urban greenway framework plan for connectivity within the South Central area, and from there to downtown Fort Wayne and Headwaters Park. Subsequent report sections discuss the feasibility and character of the facility, and strategies for its implementation.
Desire Lines & Walkable/Bikeable Scale

The idealized link between Renaissance Pointe and downtown destinations is illustrated spatially by this “desire line” diagram, a mental map of origin and destination that is unfettered by realities of grid street patterns, traffic intensity, relative comfort/security of different places, or railroad barriers.

The distance and scale of approximately two miles from centers of the identified origin and destination, as constrained by the rectilinear grid street pattern, relate well to comfortable urban bicycling distance of two to four miles (5-10 minutes). That distance, however, exceeds optimal walking distance of one-quarter to one-half mile (also 5-10 minutes).

The disincentive of greater distance can be overcome by frequency of points of interest as well as by an inviting environment and experience attractive to users. Route selection and prioritization has been based on the existence of such attractions, or the potential for their future development in synergy with trail development phasing.
Railroad Viaducts as Downtown Portals

The routes between downtown Fort Wayne and the south central area have been established by historic penetrations of the raised rail corridor that forms a virtual wall between downtown and the residential districts to the south. Six railroad viaducts and one surface crossing penetrate that wall within the general study area, but only three are reasonably proximate to the origin-destination desire line and adaptable to bicycle path use without prohibitively costly alteration. Those portals, at Harrison, Calhoun, and Hanna Streets (p1, p2, p3), create viable candidates for grid-adaptable bicycle-pedestrian connectivity routes between Renaissance Pointe and downtown.

The crossings at Fairfield, Clinton, and Lafayette, are either too removed from the desire line, are structurally constrained, or carry excessive vehicular traffic for lane reduction adaptability. Anthony, in addition to being distant from the desire line, also has multiple surface rail crossings, a safety issue.

Adapting to the Grid: East-West

The selection of three viable bicycle/pedestrian portals to and from downtown also established the preferred north-south set of candidate routes for Renaissance Pointe - Downtown connectivity. The east-west leg candidates for translation of the grid-constrained diagonal desire line to those portals was narrowed down to two streets, Creighton south of the rail corridor, and Lewis north of the rail corridor.

Creighton connects to a mixed-use node at the Northeast corner of Renaissance Pointe, passes by a major open space, Reservoir Park, and has signalized crossings at the US 27 one-way pair.

And Lewis is the first through street north of the rail corridor that links the Hanna portal and the identified destination cluster around the Botanical Conservatory, while passing several candidate streets for route continuation to Headwaters Park. Lewis also has a level of visibility conducive to both route identity and a sense of user security.
Adapting to the Grid: Downtown

The downtown sections of both Calhoun and Barr Streets terminate at cul-de-sac overlooks to Headwaters Park, and both are thus candidates for this route segment, in strictly desire line terms. But while Calhoun is more central to the higher density activity in downtown, it also is burdened by vehicular traffic serving that density. Recent decisions shifting Calhoun to a two-way, three-lane configuration will remove the spatial reserve needed for a dedicated urban greenway.

Conversely, Barr Street has less vehicular traffic demand because of its lower development density and its interruption at Freimann Park. It is an engaging route that would access multiple cultural destinations: the Performing Arts Center and adjacent Museum of Art, Old City Hall History Center, Barr Street Farmers Market, the YMCA, and the Freimann Park open space. Recent streetscape investment on Barr can be readily incorporated into an urban greenway configuration. It is thus the preferred downtown corridor of this system.
SECTION 1: PROJECT CONTEXT

An Emerging Connectivity System

Rather than select a single optimal route between Renaissance Pointe and downtown, it has become apparent that connectivity can be best served by making the route part of a larger system. Parts of the system may have greater potential for near-term success, measured by user generation potential, image, identity, and appeal.

All the feasible routes identified herein contribute to such a system. All are scalable in that they can be extended to logical termini beyond the core loop to provide a multiple-quadrant scale of connectivity that integrates to the larger RiverGreenway system and its linked public open spaces.

Implementation is proposed to occur in two phases as indicated in the diagram above (1a-1b & 2a-2b). This offers the optimal combination of constructability, user generation, and multiple neighborhood synergy, while best serving Renaissance Pointe development goals by giving it connectivity to strong neighborhoods as well as to downtown.

Scalability of the Facility: Extensions

The proposed urban greenway facility is scalable by design, i.e., it is intended to perform well, if not better, as it is extended to adjacent districts or destinations beyond the basic system described herein. Scalability also is served by supplementing the dedicated greenway facility with a pervasive bicycle lane network, and accessing it by bicycle friendly local streets with a variety of design interventions that achieve traffic calming.

This diagram indicates facility extension towards Rudisill Boulevard, for which road diet-based bicycle lanes are planned, but which could also support sidewalk expansion to multi-use path functionality, serving a larger potential population to access the historic McMillen and Foster Parks and the Rivergreenway system.

A basic set of bicycle lanes are also indicated at Pontiac, Berry, and the US 27 pair, all of which require additional feasibility study for integration into the thoroughfare plan.
SECTION 1: PROJECT CONTEXT

Figure 1.9 Concept Diagram

Left: South Central District Bicycle-Pedestrian Network concept diagram showing Downtown Rivergreenway, Renaissance Pointe, and Historic Rudisill Boulevard. This diagram illustrates the context of the project, the neighborhoods, and the travel flow adjacencies that influence the connectivity patterns and routing decisions as discussed on the preceding pages.

The proposed urban greenway bicycle and pedestrian facility shown here in broad stroke, is further refined in this study to several typologies specific to sub-area land uses and right-of-way characteristics.

Calhoun Street south of the railroad portal, for example, may require a transitional approach to bicycle access. Corridor solutions are discussed in detail in following sections of this study.
SECTION 1: PROJECT CONTEXT

The feasibility study focuses on creating a bicycle/pedestrian system that connects downtown Fort Wayne with the south central neighborhoods and landmark features and destinations. This network will become the centerpiece of the bicycle and pedestrian system for Fort Wayne.

PROJECT DESCRIPTION

Study Area

This report presents the issues and steps necessary to create an active bicycle and pedestrian linkage between the south central neighborhood areas and downtown Fort Wayne. The study area examined is bounded by the river to the north, Harrison to the west, Pontiac to the south, and Anthony to the west. Attention was also given to future network extensions to Rudisill to the south, which connects to two of Fort Wayne’s largest recreational resources, Foster and McMillan Park. Within the study area special consideration was given to connecting district nodes, or important central neighborhood features; the Botanical Conservatory and the CitiLink Transfer Station at Hanna and Creighton St.

Bicycle & Pedestrian Connectivity

The study utilized public feedback, stakeholder engagement, fieldwork, and research to examine the best options for bicycle and pedestrian connectivity in the study area (Section 1). The results of this study led to recommending the creation of an urban greenway that is supported by a network of bike lanes and sidewalks to serve the needs of south central residents. Recommendations are included for a variety of facilities to ensure system connectivity (Section 2). A feasibility analysis is included for the creation of an urban greenway loop with a central link through downtown to Headwaters Park (Section 3 & 4).

Creating a System

This network can be a core of a robust bicycle and pedestrian system in Fort Wayne, one that integrates bike lanes, shared roadways, and off-street paths. Further, it will build on the great success of the Fort Wayne Rivergreenway and draw recreational resources into the urban fabric of downtown. An urban greenway system is more than a transportation feature; it is also a linear park that provides balance to the urban environment and an improved quality of life.
Figure 1.12

City of Fort Wayne
Current Conditions and Plans
Candidate Corridor Evaluation Map

The map to the left shows some of the current conditions that were examined during the evaluation process. The candidate corridors were the focus of the initial data collection and evaluation. The map illustrates some of the evaluation criteria used in the selection process: alignment and accessibility to key destinations (1-16), commercial zoning, neighborhoods, and bike/transit routes. Bus routes, bike plans, popular destinations, land use, and neighborhood relationships were among the factors considered in determining the preferred routing for an urban greenway. Streets that permeate the railroad corridor were examined for their potential to optimize a bicycle/pedestrian system. The results of the detailed corridor evaluation are presented in Appendix A.

Legend

- River Greenway
- Planned Trails
- Planned Bike Lanes
- Planned Wide Curb Bike Lanes
- CitiLink Bus Routes
- Other Structures
- Parks
- River
- Commercial Zones
- Neighborhood Connections
- Maumee Terrace (Inactive)
- Chapel Oaks (Inactive)
- LaRez
- Renaissance Pointe Area
- East Central

Candidate Corridors
- Hanna
- Creighton
- Calhoun
- Harrison
- Barr
- Lewis
- Pontiac
- Anthony
- Berry
- Lafayette
- Clinton
- Taber
- Suttenfield

Downtown Locations
- Allen County Courthouse
- Anthony Wayne Building
- Arts United
- CitiLink
- City/County Building
- Embassy Centre
- Fire Station
- Museum of Art
- GTE Building
- Civic Center Garage
- Headwaters Park
- Journal Gazette
- Performing Arts Center
- Harrison Square
- Grand Wayne Center
- Botanical Conservatory

North

0 0.125 0.25 0.5 0.75 Miles

Purpose

This proposed connectivity plan for the south central district of near-downtown Fort Wayne builds on the city’s goal to define a route for a highly visible bicycle/pedestrian connection between the Renaissance Pointe redevelopment area and Downtown Fort Wayne and its Headwaters Park on the St. Mary’s River. At the park it will connect to the larger Rivergreenway Trail system. The purpose of such a facility is to enhance the marketability of a revitalized Renaissance Pointe as a desirable and accessible neighborhood with a high level of amenities that appeal to families that could repopulate this area. To serve this purpose, district nodes were defined that would formulate the basis for connecting the two areas.

A district node is a central place or location that has a high intensity of activity and can be thought of as focal point of land use and transportation activity. The district nodes were agreed upon as the Botanical Conservatory (Downtown) and the CitiLink Transfer Station (Renaissance Pointe).

District Nodes:

- The Botanical Conservatory: the Botanical Conservatory is a gateway to the downtown from the south central area. It is adjacent to ample parking and services, as well as centrally located among a core of desirable destinations like The Embassy Theater, Harrison Square, and the Grand Wayne Center.

- The CityLink Transfer Station: the CityLink district node is similarly a gateway to the Renaissance Pointe Redevelopment Area. It is surrounded by many other core amenities to the south central area like a branch library, fire and police stations, day care facilities, and a new YMCA. Further, this location is key to providing a transit linkage to the urban greenway. Transit serves as the arterial network for pedestrians and bicyclists, opening up regional destinations that are beyond typical walking and biking distances.
Figure 1.13
City of Fort Wayne
Current Conditions and Plans
Candidate Corridor Selection Map

The map to the left shows the results of the corridor evaluation. Illustrated is the emergence of Hanna, Creighton, Calhoun, and Lewis (green), as the recommended links in the downtown and south central area connectivity plan over the other candidates (red). Harrison and Calhoun are both feasible alternatives on the West-side. Barr emerged as the most feasible route through downtown. An additional factor considered was the walkability distance (dashed black circles) from the district nodes (solid orange dots). Land use along the corridors in relation to commercial services and potential pedestrian activity areas (solid yellow dots) was checked for existing and planned conditions. An urban greenway should be interesting and active throughout the travel experience and capitalize on economic development and placemaking potential.

Goals

- Accessibility: Provide accommodation for all types of pedestrians and bicyclists, that includes all age groups and ability ranges.
- Connectivity: Connect district nodes with key downtown destinations such as the Harrison Square, The Embassy Theater, the North River Development, The Rivergreenway and the Grand Wayne Center.
- Transportation: Balance vehicular needs with safe and comfortable pedestrian and bicycle accommodation ensuring that all modes can access the road network.
- Sustainability: Respect and enhance existing ecological systems and incorporate sustainable practices and green infrastructure.
- Placemaking: Leverage infrastructure improvements to become urban design opportunities in response to context, historic features, and heritage to create identity of place.
- Equity: Assure that the economic costs and benefits are shared among the transportation modes and populations.
- Economic: Link existing services and employment destinations. Create a positive climate for economic investment.
- Feedback: Provide opportunities for residents to participate in the project process and utilize public feedback to create the project recommendations.
- Safety: Assure that the facility is designed with appropriate lighting, signage, and visibility, to enhance neighborhood safety.

Related objectives include:

- Creating an urban greenway through Downtown to destination points like City Hall and Headwaters Park.
- Linking and strengthening Reservoir Park as a primary south central area community resources.
SECTION 1: PROJECT CONTEXT

- Creating links further to the south, including Rudisill Boulevard, and Foster and McMillan Parks.
- Supporting surrounding commercial and service oriented land uses with infrastructure investment to spur economic development opportunities; directed toward future nodal development at the intersections of Calhoun/Creighton, Hanna/Lewis, and Pontiac/Hanna.

Evaluation
Best available data were collected to evaluate the corridors in the study area. Results of the evaluation are presented in figures 1.12 & 1.13. Some examples of the factors considered are: current conditions, planned conditions, land use, vacancy, auto trips, auto projections, and ROW dimensions. These data were tabulated for the candidate corridors and evaluated in a matrix that identified priority corridors for further study. Corridors in the study area were evaluated as yes/no for meeting threshold criteria for each goal area based on the data collected (Appendix A). Additional prioritization criteria was also considered, such as, a walkability radius of ¼ - ½ mile, a bikeable radius miles 2 plus miles, railroad underpass dimensions, and local ROW control.

PROJECT PROCESS

Steering Committee
This project was led by a multidisciplinary steering committee of City and Metropolitan Planning Organization staff. The Committee included the departments of Planning, Greenways, Parks and Recreation, Redevelopment and Housing, Engineering, and Transportation. The committee worked together to define the project focus and gain consensus on the key directions to pursue.

Resident Surveys
A series of questions related to bicycle connectivity for the area was developed and incorporated into resident surveys being conducted for the Renaissance Pointe Subarea Plan.
Resident Survey Results

Resident Survey results indicated that residents travel weekly between Renaissance Pointe and downtown (16 of 18) and would consider walking or riding a bicycle if the path were safe, incorporated beautiful landscapes, and places to visit. The most preferred north-south travel routes were Hanna and Calhoun. The least preferred routes were S. Anthony, Harrison, and Fairfield. The majority of respondents believe a pedestrian and/or bicycle link will make Renaissance Pointe more appealing to home buyers and potential business owners (14 of 18).

Online Bike Surveys

The City of Fort Wayne is in the process of conducting an online bike survey to inform the ongoing bicycle planning process currently being undertaken by the Planning Department. Preliminary results were examined by the planning team to verify the project direction and recommendations. While the scope of this survey process is broader than the scope of this study the results can be used to understand how the recommendations will address the communities interest in bicycle connections.

Figure 1.15 Project Schedule

The project followed an accelerated planning process and utilized community planning principles to formulate recommendations that reflected community preferences.
Online Bike Survey Results

Results of this study support the development of more bicycle facilities in Fort Wayne. Many of the results also support the development of a family-oriented urban greenway loop within the bicycle system. Some examples of the results are:

- 802 respondents indicated that they ride for recreation compared to 272 respondents that said they ride as a means of commuting.
- 716 respondents said they ride on greenways and 524 said they ride on sidewalks compared to 417 that said they ride on busy streets on the shoulder, and 250 that said they ride on busy streets in the travel lane.
- 806 respondents said they sometimes bike with children and 60 said they always bike with children compared to 21 who said the never bike with children.
- 624 respondents said they don’t bike more often because of safety concerns and 653 said they don’t bike more often because of a lack of existing trails or bike lanes.

Field Checks and Research

The corridors in the study area were examined at the conceptual level. The project team examined existing conditions which were then cross-checked with traffic use, projections, and plans for future use. These data were utilized in tandem with field checks conducted to visualize the spacial relationships. The results of this study are presented in a Corridor Evaluation Matrix (Appendix A).

Workshop Focus Groups

The project team developed a series of focus groups to solicit opinions of community representatives and stakeholders (summarized in Appendix B). The focus groups were designed around topics that addressed specific areas of interest:

Figure 1.16 Concept Sketch Development

A consensus was reached on routes and corridor typologies to seek comments.
SECTION 1: PROJECT CONTEXT

Fort Wayne residents were invited to share ideas.

Figure 1.17 Public Open House
Fort Wayne residents were invited to share ideas.

Figure 1.18 Focus Group Photo
Local interest representatives gave feedback on details.

Figure 1.15 Focus Group with Displays
The Urban Greenway concept was explained and evaluated.

• Technical Considerations:
• Greenways and Park Connections
• Neighborhoods and Development
• Downtown Route Choices

Workshop Open House (09/04/08)

In addition to conducting the focus groups, a public open house was held to maximize resident participation in the process. Results from the focus group series were presented and participants were encouraged to share thoughts on the urban greenway concept and bicycle/pedestrian development in Fort Wayne.

Workshop Surveys

A survey was filled out by participants in the workshop focus groups and open house. The survey included several questions regarding the preferences for greenway routing, the urban greenway typology, bike lanes, and specific routing choices through downtown.

Workshop Results

Attendees of the workshop overwhelmingly expressed support for advancing bicycle and pedestrian connectivity between the south central area and downtown Fort Wayne. Broad support was also expressed for the urban greenway concept as a primary bicycle/pedestrian connection between the neighborhoods of south central Fort Wayne, downtown, and the Rivergreenway. The conversations and ideas discussed are summarized in Appendix B.

The survey results indicate support for the development of an urban greenway (20 of 22) as well as support for the development of bike lanes (18 of 24). Those who expressed a preference for an urban greenway route through downtown (12 of 19) indicated Calhoun as the first choice and Barr as the second.